
Автономная некоммерческая организация высшего образования «Информационно-технологический университет» (АНО ВО ИТУ)

УТВЕРЖДАЮ

Ректор АНО ВО ИТУ Лиджиев Б.С.

«17» января 2025 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Б1.В.01 ТЕОРЕТИЧЕСКАЯ МЕХАНИКА

Для направления подготовки:

20.03.01 Техносферная безопасность (уровень бакалавриата)

Типы задач профессиональной деятельности:

проектно-конструкторский; экспертный, надзорный и инспекционно-аудиторский.

Направленность (профиль):

Инженерная защита окружающей среды

Форма обучения:

очная

Разработчик: Мучкинова Людмила Ивановна, кандидат технических наук, доцент кафедры Математики, информатики и естественнонаучных дисциплин Автономной некоммерческой организации высшего образования «Информационно-технологический университет».

Рабочая программа разработана в соответствии с требованиями Φ ГОС ВО 20.03.01 Техносферная безопасность (уровень бакалавриата), утв. Приказом Министерства образования и науки РФ от 25 мая 2020 г. N 680

СОГЛАСОВАНО:

Заведующий кафедрой Математики, информатики и естественнонаучных дисциплин канд. пед. наук, Горяев В.М.

Протокол заседания кафедры № 1 от «16» января 2025 г.

СОДЕРЖАНИЕ

1. ЦЕЛЬ И ЗАДАЧИ ДИСЦИПЛИНЫ	4
2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП	4
2.1. Место дисциплины в учебном плане:	4
3. КОМПЕТЕНЦИИ, ФОРМИРУЕМЫЕ В РЕЗУЛЬТАТЕ ОСВОЕНИЯ	
ДИСЦИПЛИНЫ	4
4. РЕЗУЛЬТАТЫ ОСВОЕНИЯ ДИСЦИПЛИНЫ ОБУЧАЮЩИМСЯ	4
5. ОБЪЕМ ДИСЦИПЛИНЫ И РАСПРЕДЕЛЕНИЕ ВИДОВ УЧЕБНОЙ РАБОТЫ ПО	
CEMECTPAM	5
6. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ	5
СОДЕРЖАНИЕ ТЕМ ДИСЦИПЛИНЫ	6
Тема 1. Кинематика точки	
Тема 2. Кинематика твердого тела	6
Тема 3. Сложное движение точки	6
Тема 4. Динамика свободной материальной точки	6
Тема 5. Геометрия масс	
Тема 6. Общие теоремы динамики	
Тема 7. Работа силы	
Тема 8. Кинетическая энергия точки и механической системы	
7. ПРИМЕРНАЯ ТЕМАТИКА КУРСОВЫХ РАБОТ	
8. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ПО ДИСЦИПЛИНЕ	7
9. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ	
ДИСЦИПЛИНЫ	
9.1. Рекомендуемая литература:	7
9.2. Перечень информационных технологий, используемых при осуществлении	
образовательного процесса по дисциплине (модулю), включая перечень лицензионного	
и свободно распространяемого программного обеспечения	8
9.3. Перечень современных профессиональных баз данных, информационных	
справочных систем и ресурсов информационно-телекоммуникационной сети	
«Интернет»	
10. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ	9
11. МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ	
<u></u>	9
Приложение 1	.13

1. ЦЕЛЬ И ЗАДАЧИ ДИСЦИПЛИНЫ

Цель: освоить теоретические знания законов механического движения и взаимодействия материальных объектов и систем и практические навыки их применения.

Задачи:

- получение естественно-научных и общеинженерных знаний;
- освоение методов математического анализа и моделирования в инженерной деятельности, связан ной с проектированием и конструированием;
 - изучение технологий производства приборов и комплексов широкого назначения.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП

2.1. Место дисциплины в учебном плане:

Блок: Блок 1. Дисциплины (модули).

Часть: Формируемая участниками образовательных отношений.

Осваивается (семестр): 3

3. КОМПЕТЕНЦИИ, ФОРМИРУЕМЫЕ В РЕЗУЛЬТАТЕ ОСВОЕНИЯ ДИСЦИПЛИНЫ

ПК-3 - Способен разрабатывать проекты систем и устройств, направленных на защиту окружающей среды от ингредиентных и энергетических загрязнений, переработку и утилизацию техногенных образований и отходов

4. РЕЗУЛЬТАТЫ ОСВОЕНИЯ ДИСЦИПЛИНЫ ОБУЧАЮЩИМСЯ

Код и наименование компетенции	Результаты обучения
Код и наименование компетенции ПК-3 - Способен разрабатывать проекты систем и устройств, направленных на защиту окружающей среды от ингредиентных и энергетических загрязнений, переработку и утилизацию техногенных образований и отходов	Результаты обучения Знает: законы механики, включая законы Ньютона, и механические свойства материалов, а также основные принципы защиты окружающей среды и технологии переработки отходов Умеет: применять теоретические знания для разработки экологически безопасных систем, анализировать существующие решения, проводить расчёты и моделирование для эффективных
	расчеты и моделирование для эффективных природоохранных технологий Владеет: навыками применения теоретических знания для разработки экологически безопасных систем, анализа существующих решений, проведения расчётов и моделирования для эффективных природоохранных технологий

5. ОБЪЕМ ДИСЦИПЛИНЫ И РАСПРЕДЕЛЕНИЕ ВИДОВ УЧЕБНОЙ РАБОТЫ ПО СЕМЕСТРАМ

Общая трудоемкость дисциплины «Теоретическая механика» для обучающихся всех форм обучения, реализуемых в АНО ВО ИТУ по направлению подготовки 20.03.01 Техносферная безопасность составляет: 4 з.е. / 144 ча

Вид учебной работы	Всего число часов и (или) зачетных единиц
Аудиторные занятия	72
в том числе:	
Лекции	36
Практические занятия	36
Лабораторные работы	
Самостоятельная работа	72
в том числе:	
часы на выполнение КР / КП	-
Промежуточная аттестация:	
Вид	Зачет с оценкой – 3 сем.
Трудоемкость (час.)	-
Общая трудоемкость з.е. / час.	4 з.е. / 144 час.

6. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

№	Наименование темы дисциплины Очная форма обучения	Лекции	Практические занятия	Лабораторные работы	Camocr. pa6ora (e m.4. KP/KII)
		4	4		0
1	Кинематика точки	4	4		9
2	2 Кинематика твердого тела		4		9
3 Сложное движение точки		4	4		9
4 Динамика свободной материальной точки		4	4		9
5 Геометрия масс		5	5		9
*		5	5		9
7	Работа силы	5	5		9
8	Кинетическая энергия точки и механической системы	5	5		9
	Итогов (часов)		36		72
Форма контроля:		Зачет с оценкой		-	
Всего по дисциплине:		1	44 / 4 3.	e.	

СОДЕРЖАНИЕ ТЕМ ДИСЦИПЛИНЫ

Тема 1. Кинематика точки

Предмет кинематики и её значение для техники. Способы задания движения точки: векторный, координатный, естественный. Понятие о скорости точки. Скорость точки как производная от радиус-вектора по времени. Проекции скорости точки на оси декартовых координат. Проекция скорости на направление касательной к траектории и вычисление её по уравнению движения точки в естественной форме. Понятие об ускорении точки как производной от вектора скорости по времени. Проекции ускорения точки на оси декартовых координат. Разложение ускорения на касательное и нормальное. Определение этих составляющих ускорения при естественном способе задания движения точки. Вектор кривизны кривой и радиус кривизны кривой. Движение точки в полярной системе координат. Скорость и ускорение точки в полярной системе координат.

Тема 2. Кинематика твердого тела

Виды движений твердого тела. Поступательное движение твердого тела. Уравнения поступательного движения твердого тела. Теорема о траекториях, скоростях и ускорениях точек твердого тела при поступательном движении. Вращение твердого тела вокруг неподвижной оси. Уравнение вращательного движения тела, его угловая скорость и угловое ускорение. Равномерное и равнопеременное вращение. Дифференцирование векторов в подвижной системе координат. Формулы Пуассона. Формула Бура. Скорости и ускорения точек вращающегося тела. Формула Эйлера. Кососимметрическая матрица. Плоское движение твердого тела и движение плоской фигуры в её плоскости. Уравнения движения плоской фигуры. Основная теорема кинематики о перемещениях твёрдого тела, выбор полюса. Теорема о скоростях точек плоской фигуры. Теорема о проекциях скоростей точек на линию, соединяющую эти точки. Мгновенный центр скоростей. Ускорения точек плоской фигуры. Сферическое движение твердого тела. Углы Эйлера.

Тема 3. Сложное движение точки

Абсолютное, относительное и переносное движение точки. Абсолютная, относительная и переносная скорость точки. Теорема о сложении скоростей. Теорема о сложении ускорений. Ускорение Кориолиса и его вычисление. Правило Жуковского.

Тема 4. Динамика свободной материальной точки

Предмет динамики. Основные понятия и определения. Классификация сил. Примеры сил. Основные законы механики Галилея-Ньютона. Дифференциальные уравнения движения свободной материальной точки. Прямая и обратная задачи динамики материальной точки. Примеры интегрирования дифференциальных уравнений движения материальной точки. Свободное падение тела без учета сопротивления воздуха. Движение тела, брошенного под углом к горизонту, без учета сопротивления воздуха. Движение падающего тела с учетом сопротивления воздуха. Виды колебательных движений материальной точки. Свободные колебания. Свободные колебания груза, подвешенного на пружине. Затухающие колебания материальной точки. Апериодическое движение материальной точки.

Тема 5. Геометрия масс

Центр масс системы материальных точек. Момент инерции системы материальных точек. Полярный и осевой момент инерции. Радиус инерции. Момент инерции относительно декартовых осей координат. Центробежный момент инерции. Моменты инерции относительно параллельных осей (т. Гюйгенса-Штейнера). Моменты инерции некоторых простейших однородных тел: однородного стержня, круглого диска. Мо- мент

инерции относительно произвольной оси, проходящей через начало координат. Эллипсоид инерции. Тензор инерции. Главные и главные центральные оси инерции.

Тема 6. Общие теоремы динамики

Механическая система. Внешние и внутренние силы. Главный вектор сил. Главный момент сил. Теорема о движении центра масс механической системы и ее следствия. Количество движения материальной точки и механической системы. Теорема об изменении количества движения в дифференциальной форме; условия сохранения количества движения или его проекции на данную ось. Теорема об изменении количества движения в интегральной форме (теорема импульсов). Момент количества движения материальной точки и механической системы относительно точки (кинетический момент). Теорема об изменении кинетического момента механической системы и ее следствия. Кинетический момент твердого тела

Тема 7. Работа силы

Работа постоянной силы. Элементарная работа. Работа на конечном пути. Теоремы о работе. Некоторые случаи вычисления работы (работа силы тяжести, работа сухого трения, работа упругой силы). Работа момента трения качения.

Тема 8. Кинетическая энергия точки и механической системы

Кинетическая энергия материальной точки и механической системы. Теорема Кёнига. Кинетическая энергия твердого тела. Кинетическая энергия твердого тела при различных случаях движения. Теорема об изменении кинетической энергии материальной точки и механической системы.

7. ПРИМЕРНАЯ ТЕМАТИКА КУРСОВЫХ РАБОТ

Курсовая работа не предусмотрена

8. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ПО ДИСЦИПЛИНЕ

Примерный фонд оценочных средств представлен в Приложении 1.

9. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

9.1. Рекомендуемая литература:

- 1. Теоретическая механика : учебник / А. Я. Корнилов, А. В. Воробьева, С. К. Иванов, А. В. Лановая. Москва : Юриспруденция, 2024. 248 с. ISBN 978-5-9516-0952-6. Текст : электронный // Цифровой образовательный ресурс IPR SMART : [сайт]. URL: https://www.iprbookshop.ru/147352.html
- 2. Теоретическая механика : учебное пособие / Е. В. Матвеева, М. А. Васечкин, Е. В. Литвинов, М. А. Акенченко. Воронеж : Воронежский государственный университет инженерных технологий, 2023. 52 с. ISBN 978-5-00032-641-1. Текст : электронный // Цифровой образовательный ресурс IPR SMART : [сайт]. URL: https://www.iprbookshop.ru/132746.html

- 3. Назарова, Л. П. Теоретическая механика в примерах и задачах. Интегрирование дифференциальных уравнений движения материальной точки : учебное пособие / Л. П. Назарова, Е. В. Фалькова, Е. Н. Фисенко. Красноярск : Сибирский государственный университет науки и технологий имени академика М.Ф. Решетнева, 2023. 250 с. Текст : электронный // Цифровой образовательный ресурс IPR SMART : [сайт]. URL: https://www.iprbookshop.ru/146517.html
- 4. Теоретическая механика. Кинематика : электронное учебное пособие / Н. А. Еньшина, Т. А. Ковалевская, О. И. Данейко, М. В. Геттингер. 2-е изд. Томск : Томский государственный архитектурно-строительный университет, ЭБС АСВ, 2022. 222 с. ISBN 978-5-6048769-9-2. Текст : электронный // Цифровой образовательный ресурс IPR SMART : [сайт]. URL: https://www.iprbookshop.ru/130065.html
- 5. Теоретическая механика. Статика : электронное учебное пособие / Н. А. Еньшина, Т. А. Ковалевская, М. В. Геттингер, Е. В. Комарь. 2-е изд. Томск : Томский государственный архитектурно-строительный университет, ЭБС АСВ, 2022. 125 с. ISBN 978-5-6049093-9-3. Текст : электронный // Цифровой образовательный ресурс IPR SMART : [сайт]. URL: https://www.iprbookshop.ru/130066.html

9.2. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине (модулю), включая перечень лицензионного и свободно распространяемого программного обеспечения.

АНО ВО ИТУ обеспечен необходимым комплектом лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства.

Программное обеспечение, необходимое для осуществления образовательного процесса по дисциплине:

Лицензионное программное обеспечение (в том числе, отечественного производства):

- 1. Операционная система Windows Professional 10;
- 2. ПО браузер приложение операционной системы, предназначенное для просмотра Web-страниц;
- 3. Цифровой образовательный сервис «Личная студия обучающегося» (отечественное ПО);
- 4. Цифровой образовательный сервис «Личный кабинет преподавателя» (отечественное ПО);
- 5. Платформа проведения вебинаров (отечественное ПО);
- 6. Платформа проведения аттестационных процедур с использованием каналов связи (отечественное ПО).
- 7. Информационная технология. Программа управления образовательным процессом. Свободно распространяемое программное обеспечение (в том числе

Свободно распространяемое программное обеспечение (в том числе отечественного производства):

- 1. Мой Офис Веб-редакторы https://edit.myoffice.ru (отечественное ПО);
- 2. IIO OpenOffice.Org Calc http://qsp.su/tools/onlinehelp/about_license_gpl_russian.html;
- 3. IIO OpenOffice.Org.Base http://qsp.su/tools/onlinehelp/about_license_gpl_russian.html;
- 4. ΠΟ OpenOffice.org.Impress
- 5. http://qsp.su/tools/onlinehelp/about license gpl russian.html
- 6. ΠΟ OpenOffice.Org Writer
- 7. http://qsp.su/tools/onlinehelp/about_license_gpl_russian.html
- 8. IIO Open Office.org Draw
- 9. http://qsp.su/tools/onlinehelp/about_license_gpl_russian.html
- 10. ПО «Блокнот» стандартное приложение операционной системы (MS Windows, Android и т.д.), предназначенное для работы с текстами.
- 11. FreeCAD

9.3. Перечень современных профессиональных баз данных, информационных справочных систем и ресурсов информационно-телекоммуникационной сети «Интернет»

- 1. http://window.edu.ru/ единое окно доступа к образовательным ресурсам
- 2. http://www.iprbookshop.ru Электронно-библиотечная система IPRbooks (ЭБС IPRbooks) –электронная библиотека по всем отраслям знаний
- 3. https://www.elibrary.ru/ электронно-библиотечная система eLIBRARY.RU, крупнейшая в России электронная библиотека научных публикаций
 - 4. http://www.consultant.ru/ справочная правовая система КонсультантПлюс
 - 5. https://www.garant.ru/ справочная правовая система Гарант
 - 6. https://gufo.me/ справочная база энциклопедий и словарей
- 7. https://slovaronline.com справочная база, полная поисковая система по всем доступным словарям, энциклопедиям и переводчикам в режиме Онлайн

10. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Помещения для осуществления образовательного процесса по дисциплине представляют собой аудитории для проведения учебных занятий, оснащенные оборудованием и техническими средствами обучения с возможностью подключения к сети «Интернет» и обеспечением доступа в электронную информационно-образовательную среду образовательной организации.

Помещения для самостоятельной работы обучающихся оснащены компьютерной техникой с возможностью подключения к сети «Интернет» и обеспечением доступа в электронную информационно-образовательную среду образовательной организации.

Список аудиторий:

- 1. Лекционная аудитория, аудитория для групповых и индивидуальных консультаций.
- 2. Аудитория для проведения практических и семинарских занятий, текущего контроля и промежуточной аттестации.
 - 3. Аудитория для самостоятельной работы обучающихся.
 - 4. Аудитория информационных технологий.
- 5. Многофункциональная аудитория для лиц с ограниченными возможностями здоровья, актовый зал, электронная библиотека.

11. МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

Изучение дисциплины проводится в форме лекций, практических и/или лабораторных занятий, организации самостоятельной работы студентов, консультаций. Главное назначение лекции - обеспечить теоретическую основу обучения, развить интерес к учебной деятельности и конкретной учебной дисциплине, сформировать у студентов ориентиры для самостоятельной работы над учебной дисциплиной.

Основной целью практических и/или лабораторных занятий является обсуждение наиболее сложных теоретических вопросов, их методологическая и методическая проработка, выполнение практических заданий.

Самостоятельная работа с учебной, учебно-методической и научной литературой, дополняется работой с тестирующими системами, тренинговыми программами, с информационными базами, электронными образовательными ресурсами в электронной информационно-образовательной среде организации и сети Интернет.

Цель самостоятельной работы - подготовка современного компетентного специалиста и формирование способностей и навыков к непрерывному самообразованию и профессиональному совершенствованию.

Реализация поставленной цели предполагает решение следующих задач:

- качественное освоение теоретического материала по изучаемой дисциплине, углубление и расширение теоретических знаний с целью их применения на уровне межпредметных связей;
- систематизация и закрепление полученных теоретических знаний и практических навыков;
- формирование умений по поиску и использованию нормативной, правовой, справочной и специальной литературы, а также других источников информации;
- развитие познавательных способностей и активности, творческой инициативы, самостоятельности, ответственности и организованности;
- формирование самостоятельности мышления, способностей к саморазвитию, самообразованию, самосовершенствованию и самореализации;
 - развитие научно-исследовательских навыков;
- формирование умения решать практические задачи (в профессиональной деятельности), используя приобретенные знания, способности и навыки.

Самостоятельная работа является неотъемлемой частью образовательного процесса.

Самостоятельная работа предполагает инициативу самого обучающегося в процессе сбора и усвоения информации, приобретения новых знаний, умений и навыков и ответственность его за планирование, реализацию и оценку результатов учебной деятельности. Процесс освоения знаниями при самостоятельной работе не обособлен от других форм обучения.

Самостоятельная работа по подготовке письменных работ должна:

- быть выполнена индивидуально (или являться частью коллективной работы);
- представлять собой законченную разработку (этап разработки), в которой анализируются актуальные проблемы по определенной теме и ее отдельных аспектов;
 - отражать необходимую и достаточную компетентность автора;
 - иметь учебную, научную и/или практическую направленность;
 - быть оформлена структурно и логически последовательно;
- содержать краткие и четкие формулировки, убедительную аргументацию, доказательность и обоснованность выводов;
- соответствовать этическим нормам (правила цитирования и парафраз; ссылки на использованные библиографические источники; исключение плагиата, дублирования собственного текста и использования чужих работ).

Особенности организации образовательного процесса для обучающихся с ограниченными возможностями здоровья

Обучающиеся с ограниченными возможностями здоровья (далее OB3) имеют свои специфические особенности восприятия и переработки учебного материала. Подбор и

разработка учебных материалов должны производиться с учетом того, чтобы предоставлять этот материал в различных формах так, чтобы инвалиды с нарушениями слуха получали информацию визуально, с нарушениями зрения - аудиально.

Выбор средств и методов обучения осуществляется самим преподавателям. При этом в образовательном процессе рекомендуется использование социально-активных и рефлексивных методов обучения, технологий социокультурной реабилитации с целью оказания помощи в установлении полноценных межличностных отношений обучающихся с ограниченными возможностями здоровья с научно-педагогическими работниками и другими обучающимися, создания комфортного психологического климата при освоении учебного материала.

Лица с ограниченными возможностями здоровья по зрению имеют право присутствовать на занятиях вместе с ассистентом, оказывающим обучающемуся необходимую помощь; лица с ограниченными возможностями здоровья по слуху имеют право на использование звукоусиливающей аппаратуры.

При проведении промежуточной аттестации по дисциплине обеспечивается соблюдение следующих общих требований:

- проведение аттестации для лиц с OB3 в одной аудитории совместно с обучающимися, не имеющими OB3, если это не создает трудностей для лиц с OB3 и иных обучающихся при прохождении аттестации;
- присутствие в аудитории ассистента (ассистентов), оказывающего обучающимся с ОВЗ необходимую техническую помощь с учетом их индивидуальных особенностей (занять рабочее место, передвигаться, прочитать и оформить задание, общаться с экзаменатором);
- пользование необходимыми обучающимся с OB3 техническими средствами при прохождении аттестации с учетом их индивидуальных особенностей;
- обеспечение возможности беспрепятственного доступа обучающихся с OB3 в аудитории, туалетные и другие помещения, а также их пребывания в указанных помещениях.

По письменному заявлению обучающегося с OB3 продолжительность сдачи экзамена может быть увеличена по отношению к установленной продолжительности его сдачи:

- продолжительность сдачи экзамена, проводимого в письменной форме, не более чем на 90 минут;
- продолжительность подготовки обучающегося к ответу на экзамене, проводимом в устной форме, не более чем на 20 минут.

В зависимости от индивидуальных особенностей обучающихся с ограниченными возможностями здоровья организация обеспечивает выполнение следующих требований при проведении аттестации:

- а) для лиц с нарушением зрения:
- задания и иные материалы для сдачи экзамена оформляются в виде электронного документа, доступного с помощью компьютера со специализированным программным обеспечением, либо зачитываются ассистентом;
- письменные задания выполняются обучающимися с использованием клавиатуры с азбукой Брайля, либо надиктовываются ассистенту;
 - б) для лиц с нарушением слуха:
 - с использованием информационной системы "Исток";

- аттестационные процедуры проводятся в электронной или письменной форме по выбору обучающихся.

О необходимости обеспечения специальных условий для проведения аттестации обучающийся должен сообщить письменно не позднее, чем за 10 дней до начала аттестации. К заявлению прилагаются документы, подтверждающие наличие у обучающегося индивидуальных особенностей (при отсутствии указанных документов в организации).

Автономная некоммерческая организация высшего образования «Информационно-технологический университет» (АНО ВО ИТУ)

Фонд оценочных средств

Текущего контроля и промежуточной аттестации по дисциплине (модулю)

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ Б1.В.01 ТЕОРЕТИЧЕСКАЯ МЕХАНИКА

Для направления подготовки: 20.03.01 Техносферная безопасность (уровень бакалавриата)

Типы задач профессиональной деятельности:

проектно-конструкторский; экспертный, надзорный и инспекционно-аудиторский.

Направленность (профиль):

Инженерная защита окружающей среды

Форма обучения:

очная

Результаты обучения по дисциплине

Код и наименование компетенции Результаты обучения		
Код и наименование компетенции ПК-3 - Способен разрабатывать проекты систем и устройств, направленных на защиту окружающей среды от ингредиентных и энергетических загрязнений, переработку и утилизацию техногенных образований и отходов	Знает: законы механики, включая законы Ньютона, и механические свойства материалов, а также основные принципы защиты окружающей среды и технологии переработки отходов Умеет: применять теоретические знания для разработки экологически безопасных систем, анализировать существующие решения, проводить расчёты и моделирование для эффективных природоохранных технологий Владеет: навыками применения теоретических знания для разработки экологически безопасных систем, анализа существующих решений, проведения расчётов и моделирования для эффективных природоохранных технологий	

Показатели оценивания результатов обучения

Шкала оценивания				
Неудовлетворительно				
ПК-3 - Способен разрабатывать проекты систем и устройств, направленных на защиту окружающей среды				
	гетических загрязнений, пер	реработку и утилизацию те	хногенных образований и	
отходов				
Не знает: законы	Поверхностно знает:	Знает:	Знает: законы	
механики, включая	законы механики,	законы механики,	механики, включая	
законы Ньютона, и	включая законы	включая законы	законы Ньютона, и	
механические свойства	Ньютона, и	Ньютона, и	механические свойства	
материалов, а также	механические свойства	механические свойства	материалов, а также	
основные принципы	материалов, а также	материалов, а также	основные принципы	
защиты окружающей	основные принципы	основные принципы	защиты окружающей	
среды и технологии	защиты окружающей	защиты окружающей	среды и технологии	
переработки отходов	среды и технологии	среды и технологии	переработки отходов	
Не умеет: применять	переработки отходов	переработки отходов, но	Умеет: применять	
теоретические знания	В целом умеет:	допускает	теоретические знания	
для разработки	применять	несущественные ошибки	для разработки	
экологически	теоретические знания	Умеет: применять	экологически	
безопасных систем,	для разработки	теоретические знания	безопасных систем,	
анализировать	экологически	для разработки	анализировать	
существующие решения,	безопасных систем,	экологически	существующие решения,	
проводить расчёты и	анализировать	безопасных систем,	проводить расчёты и	
моделирование для	существующие решения,	анализировать	моделирование для	
эффективных	проводить расчёты и	существующие решения,	эффективных	
природоохранных	моделирование для	проводить расчёты и	природоохранных	
технологий	эффективных	моделирование для	технологий	
Не владеет: навыками	природоохранных	эффективных	Владеет: навыками	
применения	технологий, но	природоохранных	применения	
теоретических знания	испытывает затруднения	технологий, но иногда	теоретических знания	
для разработки	В целом владеет:	допускает ошибки	для разработки	
экологически	навыками применения	Владеет:	экологически	
безопасных систем,	теоретических знания	навыками применения	безопасных систем,	
анализа существующих	для разработки	теоретических знания	анализа существующих	
решений, проведения	экологически	для разработки	решений, проведения	
расчётов и	безопасных систем,	экологически	расчётов и	
моделирования для	анализа существующих	безопасных систем,	моделирования для	
эффективных	решений, проведения	анализа существующих	эффективных	
природоохранных	расчётов и	решений, проведения	природоохранных	
технологий	моделирования для	расчётов и	технологий	
	эффективных	моделирования для		
	природоохранных	эффективных		

технологий, но испытывает сильные	природоохранных технологий, но иногла	
затруднения	допускает ошибки	

Оценочные средства

Примеры темы докладов

- 1. Кинематика точки: основные определения. Способы задания движения точки.
 - 2. Векторный способ задания движения точки. Скорость и ускорение.
 - 3. Координатный способ задания движения точки. Скорость и ускорение.
 - 4. Естественный способ задания движения точки. Дуговая координата и путь.
 - 5. Скорость точки при естественном способе задания ее движения.
- 6. Ускорение точки при естественном способе задания ее движения. Вектор кривизны. Радиус кривизны.
 - 7. Классификация движения точки по ускорениям ее движения.
- 8. Движение точки в полярной системе координат (ПСК). Скорость точки в ПСК.
 - 9. Ускорение точки в полярных координатах.
- 10. Кинематика твердого тела: основные определения. Виды движения твердого тела.
- 11. Поступательное движение твердого тела. Теорема о поступательном движении.
- 12. Вращательное движение твердого тела: определение, уравнение движения, угловые кинематические характеристики.
- 13. Вращательного движения твердого тела: равномерное и равнопеременное вращение.
- 14. Дифференцирование векторов в подвижной системе координат. Формулы Пуассона. Формула Бура.
- 15. Вращательное движение твердого тела вокруг неподвижной оси: скорости точек тела. Формула Эйлера. Кососимметрическая матрица.
- 16. Вращательное движение твердого тела вокруг неподвижной оси: ускорение точек твердого тела.
- 17. Плоское движение твердого тела: определение, число степеней свободы, свойства.
- 18. Плоское движение твердого тела: основная теорема кинематики о перемещениях твёрдого тела, выбор полюса, уравнение движения.
- 19. Теорема о скоростях точек плоской фигуры. Теорема о проекциях скоростей точек на линию, соединяющую эти точки.
 - 20. Мгновенный центр скоростей (МЦС). Частные случаи определения МЦС.

Оценка доклада производится по шкале «зачтено» / «не зачтено».

Критерии оценивания тестовых заданий

Оценка формируется следующим образом:

- оценка «отлично» 85-100% правильных ответов;
- оценка «хорошо» 70-84% правильных ответов;
- оценка «удовлетворительно» 40-69% правильных ответов;
- оценка «неудовлетворительно» менее 39% правильных ответов.

Примеры экзаменационных вопросов

- 1. Опишите характер движения точки по результатам вычислений.
- 2. Каким способом задано движение точки в работе?
- 3. В каком месте на траектории движения точки наблюдается минимальный радиус кривизны?
- 4. В чем главное отличие дуговой координаты от пути?
- 5. Какие виды движения имеют место быть в работе?
- 6. В какой точке катка наблюдается максимальная линейная скорость?
- 7. Где в работе применялась теорема о скоростях точек плоской фигуры?
- 8. Какая точка в работе принята за полюс? Почему?
- 9. Почему работа силы тяжести вращающегося тела равно нулю?
- 10. Что произойдет с механической системой, если результирующая работа сил, приложенных к ее телам, будет отрицательной?
- 11. Почему работа внутренних сил, действующих на тела механической системы, не учитывается в работе?
- 12. Какая основная теорема используется для выполнения работы?
- 13. Динамика точки. Основные законы механики (законы Галилея-Ньютона)
- 14. Основное уравнение динамики. Дифференциальные уравнения движения свободной материальной точки.
- 15. Прямая и обратная задачи динамики точки.
- 16. Классификация сил. Примеры некоторых сил, действующих на точку.
- 17. Свободное падение тела без учета сопротивления воздуха.
- 18. Движение тела, брошенного под углом к горизонту, без учета сопротивления воздуха.
- 19. Движение падающего тела с учетом сопротивления воздуха.
- 20. Виды колебательных движений материальной точки. Свободные колебания.

Критерии оценки при проведении промежуточной аттестации

Оценивание знаний обучающихся осуществляется по 4-балльной шкале при проведении экзаменов и зачетов с оценкой (оценки «отлично», «хорошо», «удовлетворительно» и «неудовлетворительно») или 2-балльной шкале при проведении зачета («зачтено», «не зачтено»).

При прохождении обучающимися промежуточной аттестации оцениваются:

- 1. Полнота, четкость и структурированность ответов на вопросы, аргументированность выводов.
- 2. Качество выполнения практических заданий (при их наличии): умение перевести теоретические знания в практическую плоскость; использование правильных форматов и методологий при выполнении задания; соответствие результатов задания поставленным требованиям.
- 3. Комплексность ответа: насколько полно и всесторонне обучающийся раскрыл тему вопроса и обратился ко всем ее аспектам.

Критерии оценивания

4-балльная шкала и 2-балльная шкалы	Критерии
«Отлично» или «зачтено»	1. Полные и качественные ответы на вопросы, охватывающие все необходимые аспекты темы. Обучающийся обосновывает свои выводы с использованием соответствующих фактов, данных или источников, демонстрируя глубокую аргументацию. 2. Обучающийся успешно переносит свои теоретические знания в практическую реализацию. Выполненные задания соответствуют высокому уровню качества, включая использование правильных форматов, методологий и инструментов. 3. Обучающийся анализирует и оценивает различные аспекты темы, демонстрируя способность к критическому мышлению и самостоятельному исследованию.
«Хорошо» или «зачтено»	1. Обучающийся предоставляет достаточно полные ответы на вопросы с учетом основных аспектов темы. Ответы обучающегося имеют ясную структуру и последовательность, делая их понятными и логически связанными. 2. Обучающийся способен применить теоретические знания в практических заданиях. Выполнение задания в целом соответствует требованиям, хотя могут быть некоторые недочеты или неточные выводы по полученным результатам. 3. Обучающийся представляет хорошее понимание темы вопроса, охватывая основные аспекты и направления ее изучения. Ответы обучающегося содержат достаточно информации, но могут быть некоторые пропуски или недостаточно глубокие суждения.
«Удовлетворительно» или «зачтено»	1. Ответы на вопросы неполные, не охватывают всех аспектов темы и не всегда структурированы или логически связаны. Обучающийся предоставляет верные выводы, но они недостаточно аргументированы или основаны на поверхностном понимании предмета вопроса. 2. Обучающийся способен перенести теоретические знания в практические задания, но недостаточно уверен в верности примененных методов и точности в их выполнении. Выполненное задание может содержать некоторые ошибки, недочеты или расхождения. 3. Обучающийся охватывает большинство основных аспектов темы вопроса, но демонстрирует неполное или поверхностное их понимание, дает недостаточно развернутые объяснения.
«Неудовлетворительно» или «не зачтено»	1. Обучающийся отвечает на вопросы неполно, не раскрывая основных аспектов темы. Ответы обучающегося не структурированы, не связаны с заданным вопросом, отсутствует их логическая обоснованность. Выводы, предоставляемые обучающимся, представляют собой простые утверждения без анализа или четкой аргументации. 2. Обучающийся не умеет переносить теоретические знания в практический контекст и не способен применять их для выполнения задания. Выполненное задание содержит много ошибок, а его результаты не соответствуют поставленным требованиям и (или) неправильно интерпретируются. 3. Обучающийся ограничивается поверхностным рассмотрением темы и не показывает понимания ее существенных аспектов. Ответ обучающегося частичный или незавершенный, не включает анализ рассматриваемого вопроса, пропущены важные детали или связи.

ФОС для проведения текущего контроля и промежуточной аттестации одобрен на заседании кафедры. Протокол заседания кафедры № 5 от 15.01.2025 г.